Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
نویسندگان
چکیده
In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.
منابع مشابه
Multiscale analysis for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.
متن کاملMultiscale Analysis in Sobolev Spaces on the Sphere
We consider a multiscale approximation scheme at scattered sites for functions in Sobolev spaces on the unit sphere Sn. The approximation is constructed using a sequence of scaled, compactly supported radial basis functions restricted to Sn. A convergence theorem for the scheme is proved, and the condition number of the linear system is shown to stay bounded by a constant from level to level, t...
متن کاملData compression on the sphere using multiscale radial basis functions
We propose two new approaches for efficiently compressing unstructured data defined on the unit sphere. Both approaches are based upon a meshfree multiscale representation of functions on the unit sphere. This multiscale representation employs compactly supported radial basis functions of different scales. The first approach is based on a simple thresholding strategy after the multiscale repres...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کامل